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1.0 Introduction

Statistical power is defined as the probability of rejecting a null hypothesis when that
hypothesis is false. When performing a statistical test, there are two possible outcomes; we either
accept or reject the null hypothesis. Ideally we accept the null hypothesis when it is true and
reject it when it is false. Unfortunately, this is not always the case and we are faced with the
possibility of making two types of errors: rejecting the null hypothesis when it is true (Type I
error) and accepting it when it is false (Type II error). The probability of making a Type I error is
determined by the choice of α for the test and is thus independent of the experimental design.
However, the probability of making a Type II error, also known as β, does depend on the
experimental design. We do not customarily refer to β, but rather to power, which is equal to 1-
β. The following table may be useful in untangling the relationships of these terms.
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(α)

N
u

ll
H

yp
o

th
es

is

False Type II error
(β)

Correct decision
(1-β = Power)

It is clear that power is an important factor to be considered in a “successful” monitoring
program that hopes to detect on-going trends or transient perturbations. If we are going to go to
the trouble of implementing a monitoring program, we want to be confident that we can detect a
change when it occurs. The difficulty arises when considering the type and magnitude of change
to use for determining power because any discussion of power is only relevant for a clearly
stated statistical test or comparison. Instead of calculating the power to detect any change, we
can only calculate the power to detect a very specific change. We are therefore faced with the
possibility that we could design a monitoring protocol based on attaining sufficient power to
detect a particular type and magnitude of change, but then completely miss the change that
actually occurs. On the one hand, we are asked to design a monitoring protocol that is all-
encompassing and not tied to any given foreseeable change, while on the other hand we must
consider very specific changes in order to talk about power. In this report, we will discuss some
of the difficulties in determining the statistical power of a monitoring effort followed by an
initial look at power relevant to small mammal monitoring in Denali LTEM.
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2.0 Power and monitoring

By its very definition, power implies the use of a statistical test. Consider the following
three examples that incorporate typical power considerations.

1. In a population study, we generate an annual estimate of r, the intrinsic rate of
growth. The population is growing if r > 1 and declining if r < 1. We are primarily
interested in knowing when r is less than 1 so we perform a statistical test with the
following null hypothesis (H0) and alternative hypothesis (HA):

H0: r ≥ 1
HA: r < 1

We talk about power as the probability of rejecting H0 given that the true value of
r is some value less than 1, a value that we have to specify. So for example, say we’re
interested in the probability of rejecting H0 when the true value of r is 0.95 and we use α
= 0.05. The power we come up with is going to depend on how well we estimated r, i.e.,
the precision of our estimate as reflected in its standard error. Generally, the larger our
sample size, the more precise our estimate and hence, the greater our power. We can
alternatively specify our desired power and calculate the minimum sample size necessary
to attain it. For a desired power of 80%, we determine the minimum sample size needed
to reject H0 80% of the time when the true r is 0.95. Two things are important to note
here. First, there are no guarantees. Even with this sample size we will fail to reject H0

20% of the time. Second, if the true r is between 0.95 and 1, then the power of this test is
less than 80% despite that fact that the true r is less than 1. We had to discuss power with
a very specific scenario in mind.

2. In the same population study, we also estimate an annual survival rate. We are
interested in testing whether the survival rate in the first year of the study (S1) differs
from that of the second year (S2). Our null and alternative hypotheses are as follows:

H0: S1 = S2

HA: S1 ≠ S2

We talk about power in this case as the probability of rejecting H0 given that the
true value of S1 is different than the true value of S2. We have to go a step further and
specify a difference between S1 and S2 that we want to detect, say 0.1. To couch the
question again in terms of sample size, we determine the minimum sample size needed to
reject H0 80% of the time when the true difference between S1 and S2 is 0.1. The same
cautionary notes apply here as before. The difference between S1 and S2 can be as much
as 0.1 and we will fail to detect the difference 20% of the time, and there might be a true
difference less than 0.1 and our power to detect the difference will be less than 80%.

3. In a monitoring context, we are often interested in trends over time. Say we now
have 10 years of survival estimates and we want to test whether survival is decreasing
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with time. A common approach is to regress survival on time and test for a slope less than
0. For a slope identified as β1, our null and alternative hypotheses are as follows:

H0: β1 ≥ 0
HA: β1 < 0

The discussion of power from example 1 above directly applies here, including
the two cautionary notes. We will still miss this trend 20% of the time and it is possible to
have a slope less than 1 that will be detected less than 80% of the time.

From a monitoring perspective, we want to be assured that we will detect a change when
it occurs. Does power of 0.8 provide us with that assurance? We may want to set a higher level
for power, say 0.95, that would instill in us more confidence that we would indeed detect the
change. However, attaining that power may involve substantial increases in effort and cost to
provide the requisite larger sample sizes. This will require cost-benefit analyses to determine
whether this power level is feasible. And even at this level, someone may object to the fact that
we could still be unable to detect the change 5% of the time. Basing a monitoring strategy on the
probability of detecting a change that may not occur might not be the best way to proceed.

Talking about trends is particularly risky. In the third example above, we considered a
linear trend over time where the attribute of interest steadily decreases over time. This is only
one of many patterns that might occur over time. Consider instead a one-time perturbation to the
system such as the Prince William Sound oil spill. We might expect to see a sudden drop in
survival and then a gradual return to normal as the system recovers. Focusing on a linear trend
analysis might cause us to completely miss the event. Or even if survival stays depressed for a
long period of time, it may take several years before a test would show a statistically significant
change. Instead, it could be enough to forgo the statistical test and simply demonstrate a
relationship between the measured attribute and the perturbation. We could hope that the
perturbation only affects some monitoring sites so that we could detect a sudden difference
between sites following the insult. However, it is also possible that a perturbation will be system-
wide so that between-plot comparisons reveal nothing when in fact, ecosystem-wide changes are
occurring.

To summarize:

• Power deals with probabilities and hence the uncertainty of detecting a statistically
significant change.

• Power requires an explicit test of hypothesis and does not have any relevance beyond that
test and the scenario used to calculate it. The change that actually occurs may still have little
chance of being detected.

• Depending on the variability of the system being measured, required sample sizes to attain
desired levels of power may be unrealistic.

• Basing power on a single possible trend is too limiting in scope. When other patterns occur
over time, there may be little possibility of detecting them.
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3.0 Power and small mammal monitoring

Applying power consideration to small mammal monitoring with the Denali LTEM
program requires the consideration of population-level characteristics of the species of interest.
Specifically, we must deal with the fact that they are irruptive species with abundance levels
varying by as much as an order of magnitude from one year to the next, inducing highly inflated
inter-annual variability. Questions regarding temporal differences in abundance become moot.
The answer is an unequivocal “Yes, there are differences between years.” For populations that
maintain a constant abundance over time, this is a meaningful question that could lead to
appropriate measures being taken when and if a difference is seen. For irruptive populations,
such as small mammals in Denali, there is little point in asking the question because it is natural
for their abundance to vary by these extreme amounts and the finding of differences between
years does not compel any concern, much less any action.

Spatial patterns in population abundance or survival for an irruptive species could be of
interest and worth investigating. Do population highs and lows tend to occur at the same time for
different locations within Denali or are these population attributes independent across space? Do
population attributes follow a discernable gradient or are they fairly consistent across space?
These are questions that make sense when dealing with the sort of variability we see with small
mammals in Denali and will allow us a context for a discussion of power.

The best approach to this sort of analysis is to use simulations to duplicate the entire
sampling process. Current sampling protocol involves five primary sampling events per plot
during the summer with each primary sampling event consisting of 12 secondary sampling
events (3 per day × 4 days). There are other factors that need to be considered as well, most
important of which are the capture probabilities. We recently performed a suite of simulations to
examine the effect of varying the number of secondary sampling events on the quality of the
resulting abundance estimates. Capture probabilities were simulated using models M0 (all
capture/recapture probabilities equal for all individuals and constant over time), Mb (probability
of first capture is different from probability of recapture for all individuals), and Mh

(capture/recapture probabilities differ by individual, but constant over time). We calculated
abundance estimates for 2 to 18 secondary sampling events and several scenarios under each
model. In general, estimates had greater variability and more bias at low numbers of secondary
sampling events (2 to 5), but stabilized with more secondary events. Performance greatly
depended on the capture probability or range of probabilities used. For greater probabilities, as
few as 8 secondary sampling events appeared to be sufficient. However, this did not hold up at a
minimum capture probability of 0.1. Our conclusion from this analysis was that 12 was the
appropriate number of secondary events and would be adequate for all capture probabilities
down to our minimum of 0.1. All further analyses will be done using 12 secondary sampling
events and the worst-case capture probability model (Mh with capture probabilities from 0.1 to
0.3). We will focus on abundance as the attribute of interest for these simulations and examine
our power to detect changes and trends in abundance across time and/or space.
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3.1 Detecting differences between two locations - Methods

We first consider small mammal sampling for two locations and the power to detect a
difference in abundance between them. To date we have monitored small mammal populations at
the east end of the park road (near headquarters) and at the west end (near Wonder Lake) and we
would like to test for differences between them. We performed a series of simulations for two
populations, each with a range of abundances from 10 to 100. Capture probabilities were
generated and abundance estimates calculated. This was repeated for 500 reps with the
proportion of reps resulting in a significant difference found between populations taken as an
estimate of power. Results will be used to generate a power surface showing the power to detect
differences in survival.

Ideally, we get a power surface
such as this where we have pretty good
power to detect even slight differences
in survival. The diagonal trough in this
plot indicates no difference between
survival at the two locations. This is
low (the value should be equal to α)
because we do not want to detect a
difference here. As we move off the
diagonal, the survivals are different and
we hope to detect that difference. The
steeper the sides of the trough, the
smaller the difference we are able to
detect with reasonable certainty.

Alternatively, we could end up
with a power surface such as this where
we are only able to detect extreme
differences in survival with any
certainty.  This sampling design would
stand little chance of detecting small or
moderate differences in survival. In this
situation, there may be little that can be
done to improve the power to detect
differences given the high variability of
attributes of irruptive species and the
need to keep the length of a primary
sampling period short to maintain a
closed population.

With good power to detect differences between locations, we stand a good chance of
detecting localized impacts that would only affect one population while leaving the other as a
control. However, a system-wide impact could affect both populations equally, making it
questionable whether we could detect it.
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3.2 Detecting trends among multiple locations - Methods

Although a trend analysis over time would not be very valuable as explained above, a
trend analysis along a transect might be very interesting. We use the sampling framework we
discussed previously with regards to scaling-up options in Denali LTEM where we proposed the
selection of 12 sampling locations along the road corridor. The road corridor essentially
constitutes a transect along which we can look for spatial gradients or other patterns of
population attributes. For these simulations, we considered 11 sampling locations instead of the
proposed 12 to facilitate defining and categorizing trends along the transect.

We again used simulation methods to consider our power to detect various patterns in
abundance along this transect. We induced a structure to the true abundance at each of the 11
sampling locations and generated capture histories that were used to estimate abundance. Then
we used regression techniques to test whether a trend can be found. Induced patterns were (a)
constant abundance and (b) linearly increasing abundance. A third pattern, (c) abundance greater
at the middle of the transect and lower at both ends, will be included later. The basic forms of the
induced trends are shown here.

The regression analysis tests
for a linear and a quadratic trend.
Other trends come to mind, such as
constant abundance over half the
transect and increasing/decreasing
over the second half, but they will
not be considered here. The
patterns mentioned should be
sufficient to address the issue. Each
pattern will be used with several
ranges of abundance as indicated in
the following table.

End 2 (b) or Middle (c)
End 1 10 20 30 40 50 60 70 80 90 100

10 a b, c b, c b, c b, c b, c b, c b, c b, c b, c
20 a b, c b, c b, c b, c b, c b, c b, c b, c
30 a b, c b, c b, c b, c b, c b, c b, c
40 a b, c b, c b, c b, c b, c b, c
50 a b, c b, c b, c b, c b, c
60 a b, c b, c b, c b, c
70 a b, c b, c b, c
80 a b, c b, c
90 a b, c
100 a

Monitoring Station
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(b) Linear

(c) Polynomial



7

Induced abundances along the transect were interpolated from the values given in the table.
Constant abundance (i.e., no trend) used abundances from 10 to 100. Each linear trend (b) used
11 abundances evenly spaced and increasing from the value for End 1 to that of End 2. Quadratic
trends (c) will use six abundances evenly spaced and increasing from the value for End 1 to that
of Middle, with the remaining five abundances mirroring the first five. Results from (b) and (c)
series simulations are symmetrical so the lower half of the table will mirror the upper half
results. Power surface plots for linear trends were created as described above.
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3.3 Detecting differences between two locations - Results

Abundances were varied from 10 to 100 in increments of 1. Capture histories were
generated for each abundance level using the M(h) model with capture probabilities from 0.1 to
0.3. Abundance estimates with standard errors were computed using CAPTURE. This was
replicated 500 times. A simple Z-test was used to test for differences (α = 0.05). For tests where
abundance differed, all 500 replicates from each abundance level were used. For tests where
abundance did not differ, the 500 replicates were divided into two groups, resulting in a
diminished sample size of 250. Results are shown in Table 1 for abundances that are multiples of
10.

Table 1: Simulation results (reduced set) for detecting differences in abundance between two
locations. Power values given are the probability of detecting a significant difference. Shaded
cells on the diagonal represent equal abundances at both locations and should have power equal
to the αα used (0.05).

Location 1

N 10 20 30 40 50 60 70 80 90 100

10 0.016 0.716 0.908 0.966 0.974 0.980 0.986 0.990 0.986 0.992

20 0.716 0.004 0.494 0.920 0.950 0.964 0.976 0.986 0.986 0.988

30 0.908 0.494 0.024 0.400 0.838 0.926 0.950 0.970 0.978 0.978

40 0.966 0.920 0.400 0.004 0.334 0.828 0.930 0.956 0.966 0.964

50 0.974 0.950 0.838 0.334 0.012 0.210 0.756 0.874 0.928 0.940

60 0.980 0.964 0.926 0.828 0.210 0.000 0.172 0.712 0.880 0.928

70 0.986 0.976 0.950 0.930 0.756 0.172 0.004 0.174 0.674 0.866

80 0.990 0.986 0.970 0.956 0.874 0.712 0.174 0.004 0.126 0.578

90 0.986 0.986 0.978 0.966 0.928 0.880 0.674 0.126 0.016 0.104

Lo
ca

tio
n 

2

100 0.992 0.988 0.978 0.964 0.940 0.928 0.866 0.578 0.104 0.004

Full results are plotted on the following page. Figure 1 provides a three-dimensional view
of the power curve, while Figure 2 shows the same data as a contour plot that is more easily read.
For example, with an abundance of 60 animals at one location and 80 animals at another, our
power to detect a difference is approximately 0.7. Power to detect a given difference between
locations appears to decrease as the absolute abundances increase (i.e., the diagonal trough in the
power surface widens as abundance increases).
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Figure 1: Power surface for detecting differences in abundance between two locations.
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3.4 Detecting trends among multiple locations - Results

Abundances were varied between 10 and 100 in increments of 1. Each simulation is
categorized by two values: starting abundance and slope. The starting abundance is the
abundance at the first locations along the transect, which is also designated as the “low” end of
the trend. The slope is the change in abundance from one location to the next. So with a starting
abundance of 10 and a slope of 1, abundances would range from 10 at one end to 20 at the other.
A slope of 2 would indicate abundances from 10 to 30, etc. Not all combinations of starting
abundance and slope are possible. For example, to start at 60 with a slope of 5 would require
abundances greater than 100. Only those linear trends with populations between 10 and 100 were
run.

For each simulation, a set of capture histories was generated for each abundance level
using the M(h) model with capture probabilities from 0.1 to 0.3. Abundance estimates with
standard errors were computed using CAPTURE. This was replicated 500 times. The resulting
11 abundance estimates from each simulation were then analyzed with simple linear regression
and tested for a slope significantly different from zero (α = 0.05). If a trend had locations with
the same abundance, then bootstrapping with replacement was used to generate a new series of
abundance estimates. Results are shown in Table 2, again only for those starting abundances that
are multiples of 10.

Table 1: Simulation results (reduced set) for detecting a linear trend in abundance along a
transect. Power values given are the probability of detecting a significant trend. Cells in the first
column represent no trend in abundance should have power equal to the αα used (0.05).

Slope of Linear Trend

0 1 2 3 4 5 6 7 8 9

10 0.030 0.840 0.934 0.990 0.998 1.000 1.000 1 1 1

20 0.036 0.866 0.948 0.984 0.990 0.998 1.000 1 1 -

30 0.036 0.822 0.938 0.972 0.988 0.996 1.000 1 - -

40 0.054 0.780 0.940 0.964 0.984 0.992 0.998 - - -

50 0.030 0.732 0.948 0.962 0.982 0.996 - - - -

60 0.060 0.654 0.944 0.972 0.980 - - - - -

70 0.068 0.598 0.932 0.960 - - - - - -

80 0.050 0.568 0.946 - - - - - - -

90 0.048 0.544 - - - - - - - -

S
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100 0.056 - - - - - - - - -

Full results are plotted on the following page. Figure 3 provides a three-dimensional view
of the power curve, while Figure 4 shows the same data as a contour plot that is more easily read.
For example, with abundances less than 50 animals and a slope of only 1, our power to detect a
linear trend is approximately 0.8. Power to detect a trend appears to decrease as the absolute
abundances increase above 50.
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Figure 3: Power surface for detecting a linear trend in abundance along a transect.
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4.0 Conclusion

Power considerations begin with the individual abundance estimates computed for each
plot and sampling occasion. Adjustments can be made to the number of secondary sampling
events carried out during a single primary sampling event. We have determined that our current
strategy of 12 secondary events carried out over 4 days is sufficient to obtain good precision in
our estimates.

Power to detect a difference between two locations appears reasonable. Using the
common value for power of 0.8, we can generalize what magnitude of difference we can detect.
Table 3 summarizes the detectable differences for a range of abundances. For example, for a
location with an abundance of 60 animals, we have at least 80% power to detect a difference
from locations with less than 40 or greater than 82 animals.

Table 3: Detectable differences for select
abundance levels with a minimum power of
80%.  Values determined from Figure 2. Values
identified with an asterisk (*) were
extrapolated.

Detectable Difference

Abundance Below Above

10 < 0* > 22

20 < 8* > 34

30 < 16 > 46

40 < 24 > 58

50 < 32 > 70

60 < 40 > 82

70 < 48 > 94

80 < 56 > 106*

90 < 64 > 118*

100 < 72 > 130*

Power to detect a linear trend along a transect also appears reasonable. A trend with a
slope of 1 indicates a difference in abundance of 10 animals between one end of the transect and
the other. Power is greater than 80% for a linear slope of 1 and abundances less than 50. Power is
greater than 90% to detect a linear trend with a slope of 2 for all abundances used in these
simulations. A slope of 2 indicates a difference in abundance of 20 between the ends of the
transect.

These exercises give us a general sense of whether we will be able to detect some
changes that may occur in the future. We may not be able to guarantee that we will detect every
possible change with Denali LTEM, but we can have confidence that the data we do collect will
allow us to detect some acceptable level of change.


